3 波前像差测量的应用和前景
测量波前像差可以精确、快速、敏感 地反映人眼的像差,因此可以广泛地应用于临床和实验 中。在屈光或白内障手术后,有时眼睛的屈光不正不能用球镜和散光镜片矫正。这是由于像 差的存在,虽然眼的屈光已经是处于最佳状态,但仍不能获得最佳的视力。目前已知PRK术 后球差的增加和所需矫正的度数有关[14,15],在手术中使周边部消融得更平可以 减少或避免术后球差的产生[14],而PRK术后大多数的Zernike系数明显增大,特别 是对应于散光、球差、彗差的系数。白内障术后Zernike系数的变更更加明显[16] 。PRK术 后角膜的波前像差也增加,瞳孔的直径会影响眼睛像差的量和特性[15]。因此,根 据波前原理测量人眼的像差,并在手术过程中通过切削面的控制来矫正人眼的像差,可使术 后 患眼获得更佳的裸眼视力。关于离体的或植入的IOL的光学质量,目前普遍采用测量MTF及CS F进行评价[17],如果采用波前像差的测量则更能体现IOL和人眼的关系。对于早期 的圆锥角膜的患者,其视网膜的像质已经有所改变,通过角膜断层摄影以及Zernike分解波 前参数可以早期准确地诊断圆锥角膜[18]。而对于正常眼睛,也可以应用波前理论 ,如基于眼睛波前像差的测量,可以使用液晶空间光线调制器来矫正人眼的像差,并且在模 型眼和人眼上的实验中,已证实对视力均有一定的提高[19]。因此波前理论可以广 泛地应 用于眼科和视光学领域。
目前已生产出多种人眼波前像差测量仪,如德国蛇牌Asclepion 生产的WAS CA(wavefront aberration supported cornea ablation)、Wavefront Sciences根据Shac k-Hartmann波前感受器生产的CL-ASTM-2D、以及Dresden Wavefront Analyzer。 也有直接以波前像差为依据进行切削的PRK治疗系统,如德国Schwind生产的Esiris 智能高速扫描准分子激光系统。虽然其测量的具体结构不同,但其基本原理都是根据测量多 点上的波前像差来评价及预测人眼的视觉质量,并提供相应的信息来指导屈光手术,以得到 最佳的术后视力和视觉质量。
作者简介:周翔天(1976-),男,温州人,现为温州医学院眼视光学院硕士研究生 。
4 参考文献
[1] Thibos LN,Cheney FE,Walsh DJ. Retinal limits to the detection and resolution of rating[J]. J Opt Soc Am A,1987,(8):1524-1529.
[2] Miller DT,Williams DR,Morris GM,et al. Images of cone photo r eceptors in the living human eye[J]. Vision Res,1996,36(8):1067-1079.
[3] He JC,Burns SA,Marcos S. Monochromatic aberrations in the accommod ated human eye[J]. Vision Res,2000,40(1):41-48.
[4] Burton GJ,Haig ND. Effects of the Seidel aberrations on visual tar get discrimination[J]. J Opt Soc AM A,1984,1(4):373-385.
[5] Liang J,Williams DR. Aberrations and re-
tinal image quality of the normal human eye[J]. J Opt Soc AM A,1997,14(11):2873-2883.
[6] He JC,Marcos S,Webb RH,et al. Measurement of the wave-front ab erration of the eye by a fast psychophysical procedure[J]. J Opt Soc Am A Opt Image Sci Vis,1998,15(9):2449-2456.
[7] Zhu L,Bartsch DU,Freeman WR,et al. Modeling human eye a berrations and their compensation for high-resolution retinal imaging[J]. Opt om Vis Sci,1998,75(11):827-839.
[8] 于美玉.光全息学及其应用[M].北京:北京理工大学出版社,1996.70.
[9] Liang J,Grimm B,Goelz S,et al. Objective measurement of wave ab errations of the human eye with the use of a Hartmann-Shack wave-front sensor [J]. J Opt Soc Am A,1994,11(7):1949-1957.
[10] Navarro R,Morcno E,Dorronsoro. Mono-
chromatic aberrations and poin t-spread functions of the human eye across the visual field[J]. J Opt Soc Am A Opt Sci Vis,1998,15(9):2522-2529.
[11] Salmon TO,Thibos LN. Comparison of the eye's wave-front aberrati on measured psychophysically and with the Shack-Hartmann wave-front sensor[J ]. J Opt Soc Am A Opt Image Sci Vis,1998,15(9):2457-2465.
[12] Harris WF. Wavefronts and their propagation in astigmatic optical systems[J]. Optom Vis Sci,1996,73(9):606-612.
[13] Cui C,Lakshminarayanan V. Choice of r-
eference axis in ocular wave -front aberration measurement[J]. J Opt Soc Am A Opt Image Sci Vis,1998,15(9) :2488-2496.
[14] Schwiegerling J,Snyder RW. Corneal ablation patterns to correct f or spherical aberration in photorefractive keratectomy[J]. J Cataract Refract Surg,2000,26(2):214-221.
[15] Martinez CE, Applegate RA, Klyce SD,et al. Effect of pupillary dilation on corneal optical aberrations after photorefr active keratectomy[J]. Arch Ophthalmol,1998,116(8):1053-1062.
[16] Mierdel P,Kaemmerer M,Krinke HE,et al. Effects of photore fract ive keratectomy and cataract surgery on ocular optical errors of higher order[ J]. Graefes Arch Clin Exp Ophthalmol,1999,237(9):725-729.
[17] Norrby NE,Grossman LW,Geraghty EP,et al. Determini ng the imaging quality of intraocular lenses[J] . J Cataract Refract Surg,1998,24(5)703-714.
[18] Langenbucher A,Gusek-Schneider GC,Kus MM,et al. Kerat oconus screening with wave-front parameters based on topography height data[J ]. Klin Monatsbl Augenheilkd,1999,214(4):217-223.
[19] Vargas-Martin F,Prieto PM,Artal P. Co-
rrection of the aberrat ions in the human eye with a liquid-crystal spatial light modulator:limits to perf ormance[J]. J Opt Soc Am A Opt Image Sci Vis,1998,15(9):2552-2562.
收稿日期:2000-07-06;修回日期:2000-07-21 上一页 [1] [2] [3] |