3.3 VEGF Trap VEGF Trap是Regeneron公司基于Trap技术平台开发的一种强力VEGF 阻断剂,是一类包含VEGFR-1 和VEGFR-2细胞外区的融合蛋白。VEGF Trap与单克隆抗体相比,对VEGF有着更强的亲和力,理论上在较低剂量时就能产生极大的药效。Cursiefen等[18]观察到VEGF Trap能够明显地减少鼠在角膜移植术后角膜新生血管的形成,并有效地延长了移植物的存活时间。2006年,ARVO(association for research in vision and ophthalmology)年会上公布了VEGF Trap的Ⅰ期临床试验,对25例AMD患者每2wk静脉注射一次不同剂量的VEGF Trap(0.3,1.0,3.0mg/kg)或安慰剂,结果显示视网膜厚度的下降呈剂量依赖性,但患者的血压也与注射剂量呈正相关。目前正在进行的Ⅰ/Ⅱ期临床试验,将评估玻璃体内注射VEGF Trap治疗AMD的疗效及安全性,VEGF Trap有望成为治疗AMD和DME的新药。
3.4 siRNA RNA干扰(RNAi)是一种高度序列特异性的、保守的转录后基因沉默,是由siRNA诱导引起的同源性基因抑制。siRNA由21~23个核苷酸组成,通过结合与其有互补序列的mRNA并使其降解来达到靶基因表达的目的。选用针对VEGF的 siRNA可以特异性地抑制VEGF基因表达,引起细胞内VEGF的长期下调,而不是阻断已表达的VEGF。siRNA与适体相比,不仅分子更小,在体内的半衰期有可能更长。研究证实,一些利用siRNA技术开发的药物如Cand5和ALN-VEG01,在体内外的缺氧条件下均可以降低VEGF的表达[19]。Ⅰ期临床试验的结果显示,Cand5的剂量在3.0mg时安全性和耐受性最佳。常见的副作用包括结膜下出血、眼痛和玻璃体漂浮物。针对Cand5的Ⅱ期临床试验尚在进行中,尚未出现任何严重的药物副作用及毒性反应的报道。
3.5 VEGFR酪氨酸激酶抑制剂 VEGFR的酪氨酸激酶域是VEGF信号转导的起点,该域的活性通过受体和配体的结合而被激活,阻断该位点可以有效的抑制VEGF介导的血管生成作用, VEGFR酪氨酸激酶抑制剂可能比以VEGF作为靶点的药物更为有效。在缺氧诱导的鼠RNV模型中,每日玻璃体内注射PTK787可以减少增殖性视网膜病变[20]。针对VEGFR酪氨酸激酶设计筛选出的药物初期临床试验结果都较理想,显示出良好的药物动力学特性。如PTK787/ZK222584可以抑制所有已知的VEGFR酪氨酸激酶,正在进行两个大型的国际多中心、随机、安慰剂对照的Ⅲ期临床试验。
4结语
总之,VEGF的表达与眼部新生血管形成有着密切的时空对应关系,VEGF及其受体一直是近几十年眼部新生血管研究的中心环节。抗VEGF治疗作为一种特异性和靶向性强的治疗手段,无疑为眼部新生血管性疾病的治疗提供了一条新途径。未来的临床试验也将评估联合应用抗VEGF治疗药物的可能性,以期降低药物剂量、延长药物作用时间并减少毒副作用。
【参考文献】
1 Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett ,2001;489(2-3):270-276
2 Gao G, Ma J. Tipping the balance for angiogenic disorders. Drug Discov Today ,2002;7(3):171-172
3 Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L, Cassatella M, Noonan DM, Albini A. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. Faseb J ,2002 ;16(2):267-269
4易伟华,魏锐利,蔡季平,李玉莉.血管内皮生长因子和转化生长因子β1在眼眶海绵状血管瘤的表达及意义.国际眼科杂志,2004;4(4):247-249
5 Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res ,2000;19(1):113-129
6 Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci ,2000;41(9):2514-2522
7王启常,唐罗生.外源性VEGF诱导的大鼠视网膜血管病变.国际眼科杂志,2006;6(2):369-372
8 Alikacem N, Yoshizawa T, Nelson KD, Wilson CA. Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits. Invest Ophthalmol Vis Sci ,2000;41(6):1561-1569
9 Wang F, Rendahl KG, Manning WC, Quiroz D, Coyne M, Miller SS. AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat. Invest Ophthalmol Vis Sci ,2003;44(2):781-790
10 Kaiser PK. Antivascular endothelial growth factor agents and their development: therapeutic implications in ocular diseases. Am J Ophthalmol ,2006;142(4):660-668
11 Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR; VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med ,2004;351:2805-2816
12 Adamis AP, Altaweel M, Bressler NM, Cunningham ET Jr, Davis MD, Goldbaum M, Gonzales C, Guyer DR, Barrett K, Patel M; Macugen Diabetic Retinopathy Study Group. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology ,2006;113:23-28
13 Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ, Wendel R, Patel A. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology ,2006;113(10):1695-1705
14 Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age related macular degeneration. Ophthalmic Surg Lasers Imaging ,2005;36(4):331-335
15 Rosenfeld PJ, Fung AE, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging ,2005;36(4):336-339
16 Rosenfeld PJ, Schwartz SD, Blumenkranz MS, Miller JW, Haller JA, Reimann JD, Greene WL, Shams N. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology ,2005;112(6):1048-1053
17 Rosenfeld PJ, Heier JS, Hantsbarger G, Shams N. Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular agerelated macular degeneration. Ophthalmology ,2006;113(4):623-632
18 Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, Kruse FE, Wiegand SJ, Dana MR, Streilein JW. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci ,2004;45(8):2666-2673
19 Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis ,2003;30(9):210-216
20 Maier P, Unsoeld AS, Junker B, Martin G, Drevs J, Hansen LL, Agostini HT. Intravitreal injection of specific receptor tyrosine kinase inhibitor PTK787/ZK222 584 improves ischemia-induced retinopathy in mice. Graefe Arch Clin Exp Ophthalmol ,2005;243(6):593-600 上一页 [1] [2] |