目前已经报道117个与ADOA相关的OPA1突变,突变类型主要为缺失/插入突变、错义突变、剪接突变以及无义突变等,不同类型的突变可能通过单倍剂量不足或显性负效应机制起作用,导致线粒体异常聚集,线粒体形态改变,mtDNA稳定性下降,动作电位消失以及ROS产量增加[23]。另外,线粒体在视网膜神经节细胞及视神经中的分布也是不均的,筛板前无髓鞘部分线粒体的含量丰富,而有髓鞘部分数量明显减少,反映了两部分不同的代谢需求,这也可能是视网膜神经节细胞对OPA1突变特别敏感的原因之一[2]。由此可见,OPA1突变是通过线粒体这一中间环节发挥作用的,一方面突变的蛋白破坏了线粒体内膜的稳定性,导致呼吸链复合体功能异常,从而造成了能量生成不足及ROS含量增加;另一方面突变的蛋白可能在一定程度上造成线粒体形态的异常,导致细胞内ATP不均衡分布,最终引发ADOA的发生。
3.3 Friedreich共济失调(FRDA) Friedreich 共济失调是由9q13上FRDA基因三联密码子GAA扩展和点突变导致铁运输缺陷所引起的致死性疾病。本病遗传方式为常染色体隐性遗传,临床表现为进行性肢体活动障碍,轻度失明,耳聋,糖尿病,在成人前发生的死亡多由于肥厚性心肌病引起[24]。FRDA基因有6个外显子,编码一个由210个氨基酸构成的蛋白质,称为frataxin。对大鼠中FRDA基因产物frataxin和酵母中frataxin类似物研究表明此蛋白定位于线粒体内膜与线粒体基质中,负责调节线粒体铁的转运和维持内环境的稳定。生化研究发现线粒体内铁的增加和硫化铁的不足,可影响呼吸链一系列酶的活性,包括复合体Ⅰ、Ⅱ、Ⅲ和乌头酸酶。三联密码子GAA的重复扩展和点突变影响FRDA基因的转录和转录后加工,导致frataxin水平降低,从而致线粒体铁负荷过重,酶活性受损,ATP产生减少[25]。FRDA中视神经萎缩现象常被临床医生忽略,有研究显示其与LHON和ADOA有着相似的临床表现,包括VEP异常,颞侧视盘苍白,视力中等程度下降,神经纤维缺血及视神经脱髓鞘改变等[26]。
3.4 Leigh 综合征(Leigh syndrome,LS) Leigh 综合征,又称亚急性坏死性脑脊髓病,1951年,Leigh首次报道该病。Leigh综合征病因复杂,基本原因为线粒体呼吸链功能异常导致氧化磷酸化障碍,ATP产生减少。本病常于婴儿或儿童期发病,临床表现为运动功能和智力低下、异常呼吸节律、眼震、眼球麻痹、视神经萎缩、共济失调、肌张力障碍及血清中丙酮酸和乳酸含量增高等[27]。本病有3种遗传方式:约20%为母系遗传,为mtDNA突变所致;其余80%为常染色体隐性遗传和X连锁遗传,为nDNA突变所致[28]。在疾病发病的早期很难发现视觉系统的受损,但通过组织病理学检查可发现视盘黄斑束视网膜神经节细胞的丢失和神经纤维层的脱落[26]。近来报道的mtDNA14459/ND6 突变可致LHON、肌张力障碍及LS,进一步证明了这些疾病之间存在联系[29]。
3.5 其他视神经病变 除上述几种疾病外,还有其他一些视神经病变是由线粒体功能障碍引起的。如MERRF,MELAS等线粒体脑肌病主要是由tRNA基因的点突变引起;遗传性痉挛性截瘫伴视神经萎缩由截瘫基因引起;耳聋-肌张力障碍-视神经萎缩综合征是由X连锁DDP基因突变引发的等。在这些疾病中,视神经萎缩的临床表现并不是十分典型,但其病理生理过程十分相似。
4 展望
自发现第一个与LHON相关的mtDNA突变位点至今已有20年,然而,LHON家系男性发病率较高、家系成员不完全外显及视神经单独受累仍无法得到合理的解释,复合物Ⅰ功能缺陷导致视网膜神经节细胞凋亡的途径也不是十分明确。对于遗传性视神经病变和线粒体功能障碍的治疗仍令人困惑,LHON、ADOA等疾病仍无有效治疗方法。近年来,针对基因缺陷治疗LHON取得了一定的进展,其主要通过两种不同的方法:一是用Saccharomyces cervisiae NDⅠ1基因转染复合体Ⅰ功能缺陷的中国仓鼠的CCL162B2 细胞,以矫正呼吸链缺陷;另一种方法是在细胞核内表达mtDNA编码蛋白,即通过异位表达来纠正基因缺陷[30]。分子遗传学技术的发展、核修饰基因的定位和克隆及老鼠LHON模型的构建将对疾病发病机制的研究起到一定作用。如果我们能够掌握疾病的发病规律,了解其致病机制,将为视神经萎缩的诊断、治疗和预防提供根本依据。
【参考文献】
[1] Anderson S, Bankier AT, Barrell BG, et al . Sequence and organization of the Human mitochondrial genome[J]. Nature, 1981,290(5806):457-465.
[2] Chen H, Chan DC. Critical dependence of neurons on mitochondrial dynamics[J]. Curr Opin Cell Biol,2006,18(4):453-459.
[3] Chinnery PF, Schon EA. Mitochondria[J]. J Neurol Neurosurg Psychiatry,2003,74(9):1188-1199.
[4] Newman NJ, Lott MT, Wallace DC. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation[J]. Am J Ophthalmol,1991,111(6):750-762.
[5] Smith JL, Hoyt WF, Susac JO. Ocular fundus in acute Leber optic neuropathy[J]. Arch Ophthalmol,1973,90(5):349-354.
[6] Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic findings in Leber’s hereditary optic neuropathy. II. The fundus findings in the affected family members[J]. Arch Ophthalmol, 1983,101(7):1059-1068.
[7] Qu J, Guan MX. Molecular pathogenetic mechanism of Leber’s hereditary optic neuropathy[J]. Chinese Journal of Optometry & Ophthalmology,2006,8(6):341-348.
[8] Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy[J]. Science,1988,242(4884):1427-1430.
[9] Huoponen K, Vilkki J, Aula P, et al. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy[J]. Am J Hum Genet,1991,48(6):1147-1153.
[10] Howell N, Bindoff LA, McCullough DA, et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees[J]. Am J Hum Genet,1991,49(5):939-950.
[11] Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology[J]. Am J Hum Genet,1992,51(6):1218-1228.
[12] Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy[J]. Biochem Biophys Res Commun,1992,187(3):1551-1557.
[13] 郭向明,贾小云,肖学珊,等. 中国人Leber遗传性视神经病变线粒体DNA突变频谱[J]. 中华眼底病杂志,2003,19(5):288-291.
[14] Qu J, Li R, Tong Y, et al. The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation in a Chinese family[J]. Invest Ophth Vis Sci,2006,47(2):475-483. 15] Li R, Qu J, Zhou XT, et al. The mitochondrial tRNAThr A15951G mutation may influence the phenotypic expression of the LHON-associated ND4 G11778A mutation in a Chinese family[J]. Gene,2006,376(1):79-86.
[16] Handoko HY, Wirapati PJ, Sudoyo HA, et al. Meiotic breakpoint mapping of a proposed X linked visual loss susceptibility locus in Leber’s hereditary optic neuropathy[J]. J Med Genet, 1998,35(8):668-671.
[17] Hudson G, Keers S, Yu WM, et al. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder[J]. Am J Hum Genet,2005,77(6):1086-1091.
[18] Kjer P. Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families[J]. Acta Ophthalmol Suppl,1959,164(Supp 54):141-147.
[19] Hoyt CS. Autosomal dominant optic atrophy. A spectrum of disability[J]. Ophthalmology,1980,87(3):245-251.
[20] Votruba M, Moore AT, Bhattacharya SS. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy[J]. J Med Genet,1998,35(10):793-800.
[21] Eiberg H, Kjer B, Kjer P, et al. Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis[J]. Hum Mol Genet,1994,3(6):977-980.
[22] Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding adynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28[J]. Nat Genet,2000,26(2):211-215.
[23] Ferré M, Amati-Bonneau P, Tourmen Y, et al. eOPA1: an online database for OPA1 mutations[J]. Hum Mutat,2005,25(5):423-428.
[24] Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview[J]. J Med Genet,2000,37(1):1-8.
[25] Puccio H, Koneing M. Recent advances in the molecular pathogenesis of Friedreich ataxia[J]. Hum Mol Genet,2000,9(6):887-892.
[26] Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degenerationand mitochondrial dysfunction: genetic and acquired optic neuropathies[J]. Neurochem Int,2002,40(6):573-584.
[27] Leigh D. Subacute necrotizing encephalomyelopathy in an infant[J]. J Neurol Neurosurg Psychiatry,1951,14(3):216-221.
[28] DiMauro S, De Vivo DC. Genetic heterogeneity in Leigh syndrome[J]. Ann Neurol,1996,40(1):5-7.
[29] Kirby DM, Kahler SG, Freckmann ML, et al. Leigh disease caused by the mitochondrial DNA G14459 Amutation in unrelated families[J]. Ann Neurol,2000,48(1):102-104.
[30] Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies[J]. Prog Ret in Eye Res,2004,23(1):53-89. 上一页 [1] [2] |