3 讨论
近年来近视之药物治疗徘徊不前,仅有的有效药物阿托品[覃毒硷(muscarine)对抗药]也是在临床研究中发现能防止近视之进行。动物实验中发现了很多种视网膜制造的生长因子(bFGF、HGF、TGF-β)、激素[褪黑激素(melatonin)、5-羟色胺(serotonin)、vasoactive intestine polypeptide(VIP)]和神经递质[覃毒硷、多巴胺(dopamine)]均能促进或抑止近视之发生[2~4]。按理说这些发现必将促进近视的药物治疗发展。但迄今为止,此类物质或其对抗药物均未能用于近视之药物治疗,原因何在值得探讨。
我们发现脉络膜黑素细胞具有褪黑激素与覃毒硷等近视信使之受体[5,6],因此提出假设:由于黑素细胞具有近视信使之受体,因此此类物质无法直接到达并作用于巩膜,对近视发挥作用[1]。
实验研究发现,近视发生时,眼部bFGF含量下降而TGF-β2含量上升。眼部注射bFGF能抑止近视之发生,而TGF-β2能对抗bFGF,有防止近视作用[2,7]。在鼠眼球生长基因研究中,发现制造HGF之基因可能与眼球生长密切相关,因此HGF也可能影响近视之发生[8]。
生长因子在眼部之产生部位尚无定论,一般认为可能在视网膜产生[14~15]。本项研究发现RPE与脉络膜成纤维细胞均能制造bFGF、HGF、与TGF-β2,提示影响近视发生之生长因子也可能源自RPE与脉络膜。bFGF、HGF与TGF-β2能影响RPE、黑素细胞与成纤维细胞之生长,表明这些细胞也必有此类生长因子的受体存在。
表2 近视信使的受体在色素上皮—脉络膜细胞中存在的情况
Tab.2 The presence of receptors of retina-originated messengers related to
myopia in the cells located in the RPE-choroid
|
RPE |
Melanocytes |
Fibroblasts |
Dopamine(Ref.26) |
+ |
? |
? |
Melatonin(Ref.11,27) |
+ |
+ |
? |
Serotonin(Ref.28) |
+ |
? |
? |
bFGF |
+ |
+ |
+ |
HGF |
+ |
+ |
- |
TGFβ |
+ |
+ |
+ |
Muscarine(Ref.10) |
? |
+ |
? |
VIP(Ref.29) |
+ |
? |
? |
Nitric Oxide(Ref.1)* |
+ |
+ |
? |
*It has been demonstrated that melanin in the cultured RPE and melanocytes can reduce the amount of exogenous nitric oxide in the culture medium
图2 视网膜产生的信使阻止位于色素上皮一脉络膜的各类细胞,
使它们不能到达巩膜,从而阻滞或减轻近视发生的作用。
Fig.2 Retina-originated messengers bind to various cell types located in the
RPE-choroid,so that they cannot enter the sclera to express they effects.
Their effects are blocked or reduced.
图3 视网膜产生的信使激发色素上皮-脉络膜上的各类细胞释
放其他信使作用于巩膜而影响近视的发生。
Fig.3 Retina-oringinated messengers stimulate various cell types located in the
RPE-choroid to release other messengers to affect the sclera
and play a role in the occurrence of myopia.
进一步复习文献及回顾我们过去的研究,发现RPE、黑素细胞与成纤维细胞具有上述所有能影响近视的生长因子、激素及神经递质的受体(表2)[1,5,6,19~20]。因此证明并扩大了我们假设的范围,即已知的由神经视网膜制造的与近视有关的生化物质,无一能顺利透过RPE与脉络膜而直接作用于巩膜。RPE与脉络膜内各种细胞之作用可能为:①这些细胞可与各种近视信使结合,阻断其作用(图2)。②各种近视信使与RPE等细胞结合后能刺激或抑止这些细胞制造与近视有关的生化物质,从而作用于巩膜而影响近视之发生(图3)。RPE与脉络膜对近视的确切作用还有待研究。如能了解经RPE和脉络膜级联系统(cascade)产生的最终近视信使,必能为近视的药物治疗提供重要信息。因此,对RPE—脉络膜与近视关系的深入研究,除有助于了解近视之发病机制外,并可为近视药物治疗带来新的希望。
基金项目:Supported by the New York Eye and Ear Infirmary Departments of Ophthalmology and Pathology Research Funds。
作者简介:胡诞宁,男,上海人,旅美学者,纽约医学院眼科教授、纽约眼耳鼻喉科医院组织培养研究中心主任。
参考文献
[1] Hu DN,Roberts JE,McCormick SA. Role of uveal melanocytes in the development of myopia[A]. In Myopia Updates Ⅱ(Proceedings of the Ⅶ International Conference on Myopia)[M]. Tokyo:Springer,2000.125-126.
[2] Seko Y,Shimokawa H,Tokoro T. Expression of bFGF and TGF-β2 in experimental myopia in chicks[J]. Invest Ophthalmol Vis Sci,1995,36:1183-1187.
[3] Honda S,Fujii S,Sekiya Y,et al. Retinal control on the axial length mediated by transforming growth factor-β in chick eye[J]. Invest Ophthalmol Vis Sci,1996,37:2519-2526.
[4] Bitzer M,Schwan H,Schaeffel F. Effects of atropine on ZENK expression in the chicken retina. In Myopia 2000(Proceedings of the Ⅷ International Conference on Myopia)[M]. Boston:Conference on Myopia 2000,Inc. 2000,211-212.
[5] Hu DN,Woodward DF,McCormick ST. Influence of autonomic neurotransmitters on human uveal melanocytes in vitro[J]. Exp Eye Res,2000,71:217-224.
[6] Roberts JE,Wiechmann AF,Hu DN. Melatonin receptors in human uveal melanocytes and melanoma cells[J]. J Pineal Res,2000,28:165-171.
[7] Rohrer B,Stell WK. Basic fibroblast growth factor(bFGF) and transforming growth factor beta(TGF-β) act as stop and go signals to modulate postnatal ocular growth in the chick[J]. Exp Eye Res,1994,58:553-562.
[8] Zhou G,Williams RW. Eye1 and Eye2:Gene loci that modulate eye size,lens weight,and retinal area in the mouse[J]. Invest Ophthalmol Vis Sci,1999,40:817-825.
[9] Hu DN,Del Monte D,Liu S,et al. Morphology,phagocytosis,and vitamin Ametabolism of cultured human retinal pigment epithelium[J]. Birth Defect,1982,18(6):61-79.
[10] Hu DN,McCormick SA,Ritch R,et al. Studies of human uveal mel-
anoctyes in vitro:Isolation,purification and cultivation of human uveal melanocytes[J]. Invest Opththlmol Vis Sci,1993,33:2210-2219.
[11] Hu DN,McCormick SA,Ritch R. Studies of human uveal melanocytes in vitro:Growth regulation of cultured human uveal melanocytes[J]. Invest Ophthalmol Vis Sci,1993,34:2220-2227.
[12] Hu DN,McCormick SA,Orlow SJ,et al. Regulation of melanogenesis by human uveal melanocytes in vitro[J]. Exp Eye Res,1997,64:397-404.
[13] Hu DN,Stiernschantz J,McCormick SA. Effect of prostaglanding A2,E1,F1α and latanoprost on cultured human iridal melanocytes[J]. Exp Eye Res,2000,70:113-120.
[14] Wallman J. Retinal influence on scleral underlie visual deprivation myopia. In:Bock G,widdows K,eds. Myopia and the Control of Eye Growth. Ciba Foundation Symposium 155[M]. Chichester:John Wiley and Sons,1990.126-135.
[15] Ikeda T,Nishimura M,Ushiyama M,et al. Vitreous levels of human hepatocyte growth factor increase in proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci,1998,39(4):S124.
[16] Hackett SF,Schoenfeld CL,Freund J,et al. Neurotrophic factors,cytokines and stress increase expression of basic fibroblast growth factor in retinal pigment epithelial cells[J]. Exp Eye Res,1997,64:865-873.
[17] Mertz JR,Wallman J,Choroidal retinoic acid synthesis:A possible mediator between refractive error and compensatory eye growth[J]. Exp Eye Res,2000,70:519-527.
[18] Guggenheim J,McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew[J]. Invest Ophthalmol Vis Sci,1996,37:1380-1395.
[19] Haque R,Maltseva O,Ivanova T,et al. Dopamine D1 recpptor expression in cultured human and monkey retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci,2000,41:S843.
[20] Nash M,Flanigan T,Leslie R,et al. Serotnin-2A receptor mRNA expression in rat retinal pigment epithelial cells[J]. Ophthalmic Res,1999,31:1-14.
收稿日期:2000-08-09 上一页 [1] [2] |