4 SDF1/CXCR4与眼部新生血管性疾病
眼内新生血管性疾病主要由变性、炎症、外伤、肿瘤和特发性等各种病因所致,根据其发生的部位主要分为角膜新生血管、虹膜新生血管、视网膜新生血管和脉络膜新生血管(又称为视网膜下新生血管)[18]。其中增生性糖尿病视网膜病变、角膜新生血管、老年黄斑变性、早产儿视网膜病变等是目前常见的致盲眼病,但是其形成机制尚不十分清楚。SDF1/CXCR4能够促进血管内皮细胞的增殖、移行,协同VEGF形成新生血管。大量的实验已证实VEGF在眼部新生血管性疾病的发生发展中起到了最重要的作用,那么SDF1/CXCR4能否也在眼部新生血管性疾病中发挥特定的作用呢?
近年来的大量研究证明,SDF1/CXCR4与眼部新生血管性疾病之间的关系密切。Chalasani等[19]认为,SDF1/CXCR4可能在视网膜神经节细胞发育成熟过程提供必要的神经营养支持,视网膜色素上皮细胞通过表达SDF1/CXCR4可引起趋化因子的分泌和转移,进而介导新生血管的形成。Brooks等[20]首先发现,在弥漫性黄斑水肿患者的玻璃体内SDF1的浓度较正常人显著升高,通过玻璃体内注射曲安奈德,可降低SDF1的浓度,进而使疾病得到显著的改善,玻璃体中SDF1、VEGF的水平也有大幅度下降。Butler等[2123]认为,随着增生性糖尿病视网膜病变的发展,人玻璃体中SDF1的浓度逐步增加。他们将病理浓度的SDF1注射到小鼠玻璃体中后同样也可以诱导形成视网膜新生血管。而在大鼠糖尿病视网膜病变模型玻璃体内注射SDF1抗体,即使在外源性VEGF存在的情况下,也可以阻止病情发展。
Grant等[24]用绿色荧光蛋白标记的HSC移植到C57BL/6小鼠上制作缺血性视网膜新生血管模型,他们在小鼠视网膜上发现有绿色荧光蛋白标记的内皮细胞形成的新生血管套管,而且几乎所有的新生血管均含绿色荧光蛋白的细胞,这提示可能由HSC来源的EPC形成新生血管是缺血缺氧视网膜新生血管形成的主要方式,即属于血管发生的范畴。Lima e Silva等[25]的研究发现,SDF1和它的特异性受体CXCR4在缺氧性视网膜病变的模型上表达增多,并且SDF1首先出现在靠近视网膜表面的神经胶质细胞上,CXCR4则首先出现在骨髓来源细胞上。神经胶质细胞也可表达CXCR4,可能是细胞受刺激后的自分泌表达,但骨髓来源细胞的流入还是增加CXCR4的主要途径。缺氧所致视网膜上VEGF的高水平,也会增加CXCR4/SDF1mRNA的表达。CXCR4拮抗剂可减少骨髓来源细胞流入,还可明显抑制视网膜以及VEGF诱导的脉络膜的新生血管。Bhutto等[26]在生前确诊为早期老年性黄斑变性患者的尸眼中发现,其视网膜色素上皮层和脉络膜基质上SDF1/CXCR4表达显著。
此外,Mirshahi等[27] 还将SDF1植入兔角膜,结果可以诱导角膜大量新生血管形成,并且伴有单核细胞和淋巴细胞的浸润。Abu ElAsrar等[28]通过对交感性眼炎的研究,证实了SDF1能进一步促进炎症细胞在交感性眼炎患者眼内聚集。Fang等[29]研究发现,在自身免疫性前部葡萄膜炎大鼠模型上,SDF1/CXCR4可在疾病早期显著表达,进一步说明了其在形成新生血管上具有重要作用。SDF1/CXCR4促进眼部新生血管形成的可能机制是,SDF1诱导人眼部血管内皮细胞增加血管细胞粘附分子(vascular cell adhesion molecule1,VCAM1)的表达,后者可减少细胞表达紧密连接蛋白(Occludin),使造血干细胞和内皮祖细胞随着SDF1的浓度增加而聚集,参与新生血管的形成。而且通过上调VEGF的表达,进而协同形成眼部新生血管。
5问题与展望
针对眼部新生血管性疾病的治疗较为困难,尤其是药物治疗较少,因此常常成为视功能丧失的主要原因。近年来,虽然激光、手术及放射治疗等可在一定程度上缓解或阻止新生血管的发生、发展,但是均有不可避免地损害健康组织的风险性,且不同程度地存在疗效欠佳、代价昂贵及复发的弊病,因此寻求特异及有效的药物治疗眼部新生血管一直是广大眼科医师孜孜以求的目标。SDF1/CXCR4的出现为防治眼部新生血管性疾病提供了一个新的靶点。目前,SDF1特异性抗体及CXCR4抑制剂(如AMD3100等[30,31])已开始应用于糖尿病视网膜病变、血液病、肿瘤、自身免疫性疾病等的治疗,取得较好的疗效,其应用前景广阔。但是目前对SDF1/CXCR4的作用机制了解还不十分清楚,其对新生血管的治疗探索尚处于早期阶段,有待大量研究以进一步证明其安全性和有效性。
【参考文献】
1 Horuk R. Chemokine receptors. Cytokine and Growth Factor Reviews 2001:12(4)313335
2 Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol2008:15(1):4958
3 Bourcier T, Berbar T, Paquet S, et al. Characterization and functionality of CXCR4 chemokine receptor and SDF1 in human corneal fibroblasts. Mol Vis2003:9(1):96102
4 Crane IJ, Wallace CA, McKillopSmith S, et al. CXCR4 receptor expression on human retinal pigment epithelial cells fromthe bloodretina barrier leads to chemokinesecretion and migration in response to stromal cellderived factor 1 alpha. J Immunol2000:165(8):43724378
5 Nanki T, Hayashida K, ElGabalawy HS, et al. Stromal cellderived factor1 CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol2000:165(11):65906598
6 Mohle R, Bautz F, Raffi S, et al. The chemokine receptor CXCR4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cellderived factor1. Blood1998:91(12):45234530
7 Takano Y, Shimokado K, Hata Y, et al. HIV envelope protein gp120triggered CD4+ Tcell adhesion to vascular endotheliumis regulated via CD4 and CXCR4 receptors. Biochim Biophys Acta2007;1772(5):549555
8 Arya M, Ahmed H, Silhi N, et al. Clinical importance and therapeutic implicateons of the pivotal CXCL12CXCR4(chemokIne ligandreceptor) interaction in cancer cell migration. Tumour Biol2007;28(3):123131
9 Mueller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature2001;410(6824):5056
10 Nishimura H, Asahara T. Bone marrowderived endothelial progenitor cells for neovascular formation. EXS2005;(94):147154
11 Salvucci O, Yao L, Villalba S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromalderived factor1. Blood2002;99(8):27032711
12 Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature1998;393(6685):591594
13 Toksoy A, Müller V, Gillitzer R, et al. Biphasic expression of stromal cellderived factor1 during human wound healing. Br J Dermatol2007;157(6):11481154
14 Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NOmediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF1 alpha. J Clin Invest2007;117(5):12491259
15 Petit I, Jin D, Rafii S, et al. The SDF1CXCR4 signaling pathway: a molecular hub modulating neoangiogenesis. Trends Immunol2007;28(7):299307
16 Hitchon C, Wong K. Hypoxia induced production of stromal cell derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum2002;46(10):25872597
17 Grunewald M, Avraham I, Dor Y, et al. VEGFinduced adult neovascularization: recruitment, retention, and role of accessory cells. Cell2006;124(1):175189
18代震宇,李立.角膜新生血管治疗的研究进展.国际眼科杂志 2006;6(4):844847
19 Chalasani SH, Baribaud F, Coughlan CM, et al. The chemokine stromal cellderived factor1 promotes the survival of embryonic retinal ganglion cells. J Neurosci2003;23(11):46014612
20 Brooks HL Jr, Caballero S Jr, Newell CK, et al. Vitreous levels of vascular endothelial growth factor and stromalderived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol2004;122(12):18011807
21 Butler JM, Guthrie SM, Koc M, et al. SDF1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 2005;115(1):8693
22 Sengupta N, Caballero S, Mames RN, et al. Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci 2005;46(1):343348
23 Li Y, Reca RG, AtmacaSonmez P, et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrowderived stem cells. Invest Ophthalmol Vis Sci2006;47(4):16461652 上一页 [1] [2] |