3红细胞生成素与糖尿病视网膜病变 红细胞生成素(erythropoietin,EPO)由165个氨基酸组成的多功能蛋白质,在视网膜内主要表达在无长突细胞及双极细胞上,而其受体位于神经节细胞、无长突细胞及星形胶质细胞。EPO除有促造血、神经发生和神经保护(对抗缺血再灌注损伤和光诱导的视网膜退化)功能外,还能促进血管新生。在12~24wk早产儿玻璃体内EPO,EPOmRNA及蛋白质随着孕周增加而提高,这意味着EPO与视网膜血管发育有一定的关系[22],在成人DR患眼玻璃体内EPO浓度比对照组高,并且高于血浆浓度[23]。Watanabe等认为这与ROP的血管损伤导致新生血管形成机制类似,均是由缺氧诱导产生,而不是由血视网膜屏障破坏导致的渗漏,进而促进视网膜血管新生,同时在低氧诱导的视网膜病变鼠模型中阻断EPO将抑制视网膜新生血管的形成及内皮细胞增生。
4转化生长因子与糖尿病视网膜病变 转化生长因子(transforming growth factorβ,TGFβ)为抗血管生成因子,玻璃体内的亚型是TGFβ2。在视网膜周细胞及内皮细胞共同培养时TGFβ由周细胞产生,随后抑制内皮细胞生长。因为DR发病时周细胞减少,故TGFβ也相应减少,从而导致了内皮细胞无限制增生,对新生血管发生起去抑制作用。也有研究认为TGF总量在DR时并未改变,只是其活化部分的比例降低,与非缺血性眼病相比,活化部分在PDR时下降了1/3。这一现象出现的原因可能是TGF的活化过程受蛋白酶如纤溶酶的调节,而在PDR组α2抗纤维蛋白酶(纤溶酶的不可逆抑制剂)水平显著提高。此外,研究报道病龄相对长的糖尿病鼠肾脏中TGF1水平升高,这种细胞因子可能参与VEGFR2的过度表达和刺激VEGF表达。
5成纤维细胞生长因子与糖尿病视网膜病变 许多细胞因子和生长因子包括基本成纤维细胞生长因子(basic fibroblast growth factor,bFGF)参与DR的发病。DR新生血管的形成的一个重要机制为内皮细胞凋亡受抑制,从而促进内皮细胞存活,这一机制可由远距离生长因子通过PI3k/Akt信号通路和上调凋亡抑制蛋白——生存素及Bcl2而实现,bFGF在这两方面均有作用,一方面,能上调生存素及Bcl2的表达,另一方面,可以激活蛋白激酶Akt,因而促进了DR新生血管形成,有一些抗新生血管形成的研究还涉及到bFGF糖化,因为其降低了bFGF与肝素结合的高亲和力及促有丝分裂活性[24]。此外,激素能抑制由bFGF诱导的脉络膜微血管内皮细胞迁移及管道形成等。
6结缔组织生长因子与糖尿病视网膜病变 结缔组织生长因子(connective tissue growth factor,CTGF)是VEGF诱导的促血管生成原因子和强效促纤维化因子。CTGF增加成纤维细胞增生和促血管细胞外基质产生。细胞外基质(ECM)表达增加使基底膜增厚,从而导致是视网膜血管渗透性增加和细胞迁移,加速DR发生发展。STZ诱导的糖尿病鼠增加了CTGFmRNA的表达及CTGF蛋白在视网膜节细胞层聚集,但这一过程能被ACE抑制剂逆转[25]。
7肝细胞生长因子与糖尿病视网膜病变 肝细胞生长因子(hepatocyte growth factor,HGF)为间质衍生的多效因子,是二硫化物连接的异二聚体分子,由69kDa的Kringle结构域α链及34kDa的β链组成。HGF受体是cmet原癌基因产物(跨膜酪氨酸激酶)。HGF能调节细胞的活性及生长,是一个强效的血管生成因子,刺激内皮细胞活性,促进内皮细胞在细胞外基质中的分散。同时,HGF也是内皮生长因子,其促进有丝分裂活性与bFGF,VEGF,IL1及IL6相比是最强的,即能刺激内皮细胞活性及生长,导致新生血管形成。Nishimura等认为HGF及VEGF在PDR患眼玻璃体内浓度较对照组增高,且在活动性视网膜病变眼内比静止性视网膜病变眼内浓度要高,而HGF及VEGF的增高无相关性。至于HGF的作用途径,Tacchini认为是通过CJNK和PI3激酶诱导HIF1的产生,而HIF1能感知下降的氧分压从而激活HIF1目标基因——VEGF及EPO,据前所述,此两种因子均是强烈的促血管生成因子。
【参考文献】 1 Wang FH, Liang YB, Zhang F, et al. Prevalence of diabetic retinopathy in rural China: the Handan Eye Study. Ophthalmology 2009;116(3):461467
2 Murugeswari P, Shukla D, Rajendran A, et al. Proinflammatory cytokines and angiogenic and antiangiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales disease. Retina 2008;28:817824
3 Buraczynska M, Ksiazek P, BaranowiczGaszczyk I, et al. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant 2007;22: 827832
4 Ray D, Mishra M, Ralph S, et al. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 2004;53(3):861864
5 Forooghian F, Das B. Antiangiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxiainducible factor1alpha. Am J Ophthalmol 2007;144(5):761768
6 Funatsu H, Yamashita H, Mimura T, et al. Risk evaluation of outcome of vitreous surgery based on vitreous levels of cytokines. Eye 2007;21:377382
7 Kubota Y, Hirashima M, Kishi K, et al. Leukemia inhibitory factor regulates microvessel density by modulating oxygendependent VEGF expression in mice. J Clin Invest 2008;118(7):23932403
8 Ojima T, Takagi H, Suzuma K, et al. EphrinA1 inhibits vascular endothelial growth factorinduced intracellular signaling and suppresses retinal neovascularization and bloodretinal barrier breakdown. Am J Pathol 2006;168(1):331339
9 Krohne TU, Eter N,Holz FG, et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol 2008;146(4):508512
10 Sawada O, Kawamura H, Kakinoki M, et al. Vascular endothelial growth factor in aqueous humor before and after intravitreal injection of bevacizumab in eyes with diabetic retinopathy. Arch Ophthalmol 2007;125(10):13631366
11 Grisanti S, Biester S, Peters S, et al. Tuebingen bevacizumab study group.Intracameral bevacizumab for iris rubeosis. Am J Ophthalmol 2006;142(1):158160
12 Oshima Y, Sakaguchi H, Gomi F, et al. Regression of iris neovascularization after intravitreal injection of bevacizumab in patients with proliferative diabetic retinopathy. Am J Ophthalmol 2006;142(1):155158
13 Gharbiya M, Allievi F, Mazzeo L, et al. Intravitreal bevacizumab treatment for choroidal neovascularization in pathologic myopia: 12month results. Am J Ophthalmol 2009;147(1):8493
14 Nguyen QD, Shah SM, Hafiz G, et al. Intravenous bevacizumab causes regression of choroidal neovascularization secondary to diseases other than agerelated macular degeneration. Am J Ophthalmol 2008;145(2):257266
15 Yang CM, Yeh PT, Yang CH, et al. Bevacizumab pretreatment and longacting gas infusion on vitreous clearup after diabetic vitrectomy. Am J Ophthalmol 2008;146(2):211217
16 Kurihara T, Ozawa Y, Nagai N, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes 2008;57(8):21912198
17 Zhang X, Bao S, Lai D, et al. Intravitreal triamcinolone acetonide inhibits breakdown of the bloodretinal barrier through differential regulation of VEGFA and its receptors in early diabetic rat retinas. Diabetes 2008;57(4):10261033
18 Brooks HL Jr, Caballero S Jr, Newell CK, et al. Vitreous levels of vascular endothelial growth factor and stromalderived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 2004;122(12):18011807
19 Kumar V, Ghosh B, Raina UK, et al. Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol 2008;146(6):974975
20 Maia OO Jr, Takahashi BS, Costa RA, et al. Combined laser and intravitreal triamcinolone for proliferative diabetic retinopathy and macular edema: oneyear results of a randomized clinical trial. Am J Ophthalmol 2009;147(2):291297
21 Ruberte J, Ayuso E, Navarro M, et al. Increased ocular levels of IGF1 in transgenic mice lead to diabeteslike eye disease. J Clin Invest 2004;113:11491157
22 Patel S, Rowe MJ, Winters SA, et al. Elevated erythropoietin mRNA and protein concentrations in the developing human eye. Pediatr Res 2008;63:394397
23 Inomata Y, Hirata A, Takahashi E, et al. Elevated erythropoietin in vitreous with ischemic retinal diseases. Neuro Report 2004;15:877879
24 JeanLuc Wautier, Ann Marie Schmidt. Protein glycation a firm link to endothelial cell dysfunction. Circ Res 2004;95:233238
25 Tikellis C, Cooper ME, Twigg SM, et al. Connective tissue growth factor is upregulated in the diabetic retina: amelioration by angiotensinconverting enzyme inhibition. Endocrinology 2004;145:860866
上一页 [1] [2] |