5神经干细胞移植的发展趋势
5.1神经干细胞移植与基因治疗相结合 年龄相关性白内障、色素性视网膜变性、青光眼等疾病的眼底病变都与细胞凋亡有关[30];而随着视网膜变性性疾病发病机制的分子水平的了解,发现其中一部分疾病与基因突变有关:如Leber先天性黑朦(leber congenital amaurosis,LCA)与RPE65基因突变有关[31]。那么,能不能通过移植经过基因修饰的神经干细胞来达到一方面提供多种细胞因子来延缓视网膜细胞凋亡,另一方面又能通过移植入正常基因型的干细胞来替代一部分有变异的视网膜细胞呢?目前研究证实,多种生长因子具有延缓视网膜细胞凋亡的能力,包括碱性成纤维生长因子(bFGF)、脑源性神经营养因子(BDNF)、睫状营养因子(CNTF)、神经生长因子等[3234]。经过基因修饰的神经干细胞移植入视网膜后,在视网膜增殖分化,可以替代损伤调亡的视网膜细胞;不仅如此,还可以充当生物反应器,不需要多次注射而能够不断分泌神经营养因子,使其在视网膜持续高效的表达,并且携带外源基因的靶细胞在体内合成的内源性蛋白,还可以经过适当的翻译后修饰过程,可以识别更多的配体,与细胞表面受体结合更有效,因此表达的神经营养因子活性更高。不仅可以增强宿主视网膜的抗打击能力,而且更有利于自身在宿主体内的存活、迁移、整合、分化。
5.2神经干细胞移植与生物可降解复合物共同移植 虽然许多研究表明了神经干细胞移植到宿主视网膜下腔或者玻璃体内后能够在宿主视网膜内迁徙并且可与宿主视网膜整合,分化为多种视网膜细胞并且建立结构性和功能性的细胞连接。但是由于区室(Compartment)的存在对植入细胞的影响[35],细胞在宿主体内的存活和转运仍然受到限制,这就制约了其临床运用。而纳米生物材料学技术的发展带来了新的曙光。目前应用的纳米材料以可生物降解性的聚合物体系和天然大分子体系为主,前者如丙烯酸烷基酯、聚丙烯酰胺、乳酸乙醇酸共聚物等;后者如蛋白质、明胶、多糖等。实验证明其在眼表和眼内具有良好的生物相容性[3638]。Minoru等[35]的最新研究比较了传统的视网膜下腔视网膜干细胞移植和用PLLA/PLGA聚合物包裹的视网膜干细胞视网膜下腔移植,结果发现植入后4wk后者的干细胞存活是前者的10倍,迁移细胞数是后者的16倍;而且植入的干细胞与宿主的视网膜融合、分化并且表达了多种感光细胞和神经胶质细胞特异标记物,提示了神经干细胞与生物可降解复合物共同移植能够提高移植细胞的存活以及总产率。 总之,视网膜的神经干细胞移植技术对于多种目前缺乏有效药物治疗的视网膜疾病而言,是一种极有潜力的治疗手段。神经干细胞的自我更新、多分化潜能,使得其非常适合与细胞移植;而机体内广泛存在的神经干细胞加上体外培养扩增技术为我们提供了充足的细胞源。大量的动物试验证实了神经干细胞移植到视网膜下腔或者玻璃体内后能够在宿主视网膜内迁移和分化为多种神经元和神经胶质细胞,并且能够发出突触,建立广泛的细胞连接,形成有功能的网络结构。而基因治疗技术和纳米生物学材料的发展为解决视网膜神经干细胞移植所存在的问题提供了新的思路,更进一步的推动了神经干细胞移植技术的发展。然而,目前所进行的试验主要集中在啮齿动物模型,在运用到临床前,为了能够更好地证明其有效性,需要在更大的动物模型上进行,如猪、狗、猴。因为这些动物模型与人类有着更近的生物同源相似性,能更好地模拟人体的情况。此外,如何对神经干细胞分化为成熟神经元并且与宿主视网膜建立功能性网络结构进行诱导,并且在防止可能出现的肿瘤性分化等方面仍然需要更进一步的研究。相信在不久的将来,这项技术能成为解决多种难治性视网膜疾病的有利武器。
【参考文献】
1 Sakaguchi DS, Van Hoffelen SJ, Young MJ. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann NY Acad Sci,2003;995:127139
2 Radtke ND, Aramant RB, Seiler M. Preliminary report :indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients. Am J Ophthalmol,1999;128(3):384387
3 Del Priore LV, Kaplan HJ, Tezel TH. Retinal pigment epithelial cell transplantation after subfoveal membranectomy in agerelated macular degeneration:clinicopathologic correlation. Am J Ophthalmol,2001;131(4): 472480
4 Radtke ND, Seiler MJ, Aramant RB. Transplantation of intact sheets of fetal neural retina with its retinal pigment epithelium in retinitis pigmentosa patients. Am J Ophthalmol,2002;133(4):544550
5 Berger AS, Tezel TH, Del Priore LV. Photoreceptor transplantation in retinitis pigmentosa : shortterm followup. Ophthalmology,2003;110(2):383391
6 Ourednik V, Ourednik J, Park KI. Neural stem cells are uniquely suited for cell replacement and gene therapy in the CNS. Novartis Found Symp,2000;231:242269,302306
7 Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGFresponsive mammalian embryonic CNS precursor is a stem cell. Dev Biol,1996;175(1):113
8 Flax JD, Aurora S, Yang C. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol,1998;16(11):10331039
9 Gage FH. Mammalian neural stem cells. Science,2000;287(5457):14331438
10 Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES)cells in culture. Development,1991;111:259267
11 Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest,1996;98:216224
12 Lumelsky N, Blondel O, Laeng P. Differentiation of embryonic stem cells to insulinsecreting structures similar to pancreatic islets. Science,2001;292:13891394
13 Arnhold S, Lenartz D, Kruttwig K. Differentiation of green fluorescent proteinlabeled embryonic stem cellderived neural precursor cells into Thy1positive neurons and glia after transplantation into adult rat striatum. J Neurosurg,2000;93:10261032
14 Schuldiner M, Eiges R, Eden A. Induced neuronal differentiation of human embryonic stem cells. Brain Res,2001;913:201205
15 Arnhold S, Klein H, Semkova I. Neurally selected embryonic stem cells induce tumor formation after longterm survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci,2004; 45:42514255
16 Wetts R, Serbedzija GN, Fraser SE. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol,1989;136:254263
17 Johns PR. Growth of the adult goldfish eye. Ⅲ. source of the new retinal cells. J Comp Neurol,1997;176:343357 上一页 [1] [2] |