3问题和展望
由于眼部的特殊组织结构,一直作为基因治疗理想的靶器官。眼是一个相对隔离的组织空间,在眼局部应用siRNA可避免其与身体其他部位的直接接触,同时也可相应的减少siRNA的用量。有研究发现[32],将siRNA注射于玻璃体中很快就在眼组织内扩散开,并且直到注射后5d仍能检测到siRNA的表达,等到siRNA扩散出眼组织之外时,它已经被高度稀释,很难再对其他组织的同一基因发挥效应,这样它对身体其他组织基因的作用微乎其微。相对于系统的应用siRNA来说,眼组织的这种特点使得在眼部应用RNAi治疗可以有效的沉默眼部基因,从而避免对身体其他部位同种基因的“远达效应”,这种缘于siRNA序列特异性和眼组织相对独立性的局部siRNA应用,为研究眼组织局部“基因敲除”提供了便利的途径。尽管RNAi在研究基因功能、基因治疗中表现出相当的优越性,但是仍然有很多问题亟待解决。如RNAi具体的分子机制,如何确定有效RNAi的位点,如何高效导入siRNA,怎样保证导入siRNA的稳定性,如何有效延长RNAi的作用时间,各类表达载体及合成RNA的毒副作用等。然而,RNAi独特的作用机制及其简便的操作流程和对靶基因表达抑制的高效性使其在肿瘤基因治疗方面显示出了广阔的应用前景。相信随着研究的广泛细致深入,越来越多的与肿瘤生长增殖密切相关的高特异性靶基因及能使外源性治疗基因高效表达载体的发现,RNAi技术将可能成为视网膜母细胞瘤基因治疗的一种新手段。
【参考文献】
1 Balmer A, Zografos L, Munier F. Diagnosis and cttrrent management of retinoblastoma. Oncogene 2006;25(38):534l5349
2 Sheng XL,Wang J,Guo H, et al. Mutations analysis of RB1 gene in Chinese patients with rettinoblastoma. Int J Ophthalmol(Guoji Yanke Zazhi) 2006;6(1):7577
3 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by doublestranded RNA in caenorhabditis elegans. Nature 1998;391(6669):8068l1
4 Elbashir SM,HaRBorth J,Lendeckel W, et al. Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494 498
5 Caplen NJ. A new approach to the inhibition of gene expression. Treends Biotechnol 2002;20(2):4951
6 Parrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger:differential requirement for the two trigger strands in RNA interference. Mol Cell 2000;6(5):10771087
7 Hutvagner G, Zamore PD. RNAi: nature abhors a doublestrand. Curr Opin Genet Dev 2002;12(2):225232
8 Zamore PD, Tuschl T, Sharp PA, et al. RNAi:doublestranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101(1):2533
9 Hammond SM, Bernstein E, Beach D, et al. An RNAdirected nuclease mediates posttranscriptioal gene silencing in Drosophila cells. Nature 2000;404(6775):293296
10 Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9(3):347351
11 Fu H, Muenzer J, Samulski RJ, et al. Selfcomplementary adenoassociated virus serotype 2 vector:global distribution and broad dispersion of AAVmediated transgene expression in mouse brain. Mol Ther 2003;8(12):911917
12 Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004;35(10):17721777
13 Isayeva T, Kumar S, Ponnazhagan S. Antiangiogenic gene therapy for cancer. Int J Oncol 2004;25(12):335343
14 Moreira IS, Fernandes PA, Ramos MJ. Vascular endothelial growth factor(VEGF) inhibitiona critical review. Anticancer Agents Med Chem 2007;7(2):223245
15 Liu WH, Li YZ, Wu YQ. Vaswlar endothelial growth factor and intraocular nevaswlarixation. Int J Ophthalmol(Guoji Yanke Zazhi) 2007;7(6):16811684
16 Wang Q, Liu S. Experimental study of retinoblastoma gene therapy using RNA interference to inhibit VEGF gene expression. Chinese Journal of Optometry & Ophthalmology 2007;9(6):391394
17 Jia RB, Fan XQ, Wang XL, et al. Inhibition of VEGF expression by plasmidbased RNA interference in the retinoblastoma cells. Chinese Journal of Ophthalmology 2007;43(6):493 498
18 Jia RB, Zhang P, Zhou YX, et al. VEGFtargeted RNA interference suppresses angiogenesis and tumor growth of retinoblastoma. Ophthalmic Res 2007;39(2):108115
19 Peng HC, He XZ, Fei ZG, et al. Expression of survivin, P16 and Bcl2 proteins in retinoblastoma. Int J Ophthalmol(Guoji Yanke Zazhi) 2005;5(5):939941
20 Coma S, Noe V, Lavarino C, et al. Use of siRNAs and antisnse oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis. Oligonucleotides 2004;14(2):100103
21王国军,胡燕华,李鹏程.survivin和cmyc蛋白在视网膜母细胞瘤中的表达.中华眼科杂志2007;43(6):554556
22 Wang GJ, Hu YH, Li PC. Effects of shRNA targeting survivin on apoptosis of human retinoblastoma cell line Hxorb44 in virto. J Huazhong Univ Sci Technolog 2006;26(5):614 617
23 Zhu HX, Liu S, Zhou CQ, et al. Antiapoptosisgene survivin promotes cell growth and transformation. J Chin Med(Chinese) 2002;82(5):338340
24 Endoh T, Tsuji N, Asanuma K, et al. Survivin enhances telomerase activity via upregulstion of specificity protein 1and cMycmediated human telomerase reverse transcriptase gene transcription. Exp Cell Res 2005;305(2):300311
25 Motoyamal S, LadinesLlave CA, Luis Villanueva S, et al. The role of human papilloma virus in the molecular biology of cervical carcinogensis. Kobe J Med Sci 2004;50(12):919
26 Ha PK, Califano JA. The role of human papillomavirus in oral carcinogensis. Crit Rev Oral Biol Med 2004;15(4):188196
27 Orjuela M, Castaneda VP, Ridaura C, et al. Presence of human papilloma virus in tumor tissue from children with retinoblastoma: An atternative mechan7sm for tumor development. Clin Cancer Res 2000;6:4010 4016
28 Yamato K, Yamada T, Kizaki M, et al. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther 2008;15(3):140153
29 Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 16positive cervical cancer cells by E6 siRNA. MolTher 2003;8(5):762768
30 Wong S,Weber JD. Deacetylation of the retinoblastoma tumor suppressor protein by SIRT1. Biochem J 2007;407(3):451 460
31 Yang H, Liu FT, Cui DX, et al. Effect of blocking BRCAA1 gene with siRNA on proliferation of MCF7 cells and expression of RB gene. Chinese Journal of Cancer Biotherapy 2006;13(3):181184
32 Shen J, Samul R, Silva R, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor1. Gene Ther 2006;13(3):225234
上一页 [1] [2] |